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Abstract. In the first paper of our series, we have studied certain crucial mathematical 
properties of Abelian Berry’s phases in two quantum systems with supersymmetrically 
related Hamiltonians. We fallow up such investigation by extending our analysis to 
non-Abelian Berry’s phases in this present study. We present the derivation of an explicit 
expression for the difference in the relevant non-Abelian Berry’s connections. Also we have 
derived an expression for a connection one form, which contain the non-Abelian Berry’s 
connection, and which is invariant in the two supersymmetrically related quantum systems. 
To illustrate our findings mentioned above, we take the example of a Hamiltonian express- 
ible in spin quadrupole. In this example, with aparticular choice of supersymmetric partner, 
we show that the two Berry’s connection one forms of the two supersymmetrically related 
systems may be related by gauge transformation 

1. Introduction 

The useful concept of geometric phases 11-41 has attracted a lot of attention for the 
past several years. The natural mathematical explanation for geometric phases can be 
expressed in terms ofthe theory of U(N) fibre bundle [5-71. Recently we have discussed 
certain properties of Abelian Berry’s phases in supersymmetric quantum mechanics 
[SI. It is found that the Abelian Berry’s phases in two supersymmetrically related 
quantum systems are not independent but their difference can be derived explicitly. 
Moreover there is a topological quantity, which contains the Abelian Berry’s phase, 
invariant in the supersymmetrically related quantum systems. Such an invariant topo- 
logical quantity can be interpreted in the terminology of holonomy and is shown to 
be corresponding to the essential gauge transformation in a system of spin-; particle 
in a time-varying magnetic field. 

We are going to generalize our findings in the Abelian case to non-Abelian case. 
Instead of a simple phase factor in the Abelian case, an non-Abelian Berry’s phase is 
a N x N unitary matrix in which N is the dimension of the instantaneous space of 
degenerate levels. Since Berry’s phases result from time evolution of a quantum system, 
we shall discuss some features of the time-dependent supersymmetric quantum 
mechanics with degeneracy briefly in section 2. We shall also present the supersymmetric 
relation between the sets of instantaneous normalized bases for the two supersymmetri- 
cally related Hamiltonians, which is essential for our following discussions. 

In section 3, we shall first outline the framework of non-Abelian Berry’s phase and 
then derive an explicit expression for the difference in the non-Abelian Berry’s connec- 
tions involving two supersymmetrically related instantaneous space of degenerate 
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levels. Furthermore we shall construct, as we have done in the Abelian case [g], a 
topological quantity, which behaves as a connection one form, and which is invariant 
in the two supersymmetrically related quantum systems. 

We shall propose an example to  illustrate our results obtained in section 4. We 
adopt a system with spin quadrupole Hamiltonian [9, IO] which possesses a non- 
Abelian structure with a doubly degenerate sector [IO]. Moreover, it is shown that the 
spin quadrupole Hamiltonian can be factorized in various ways according to supersym- 
metric quantum mechanics [ 11-13]. Different ways of factorization yield different pairs 
of supersymmetric partners. We shall discuss two particular cases among these super- 
symmetric pairs. Apart from the derivations of the difference in the non-Abelian Berry's 
connections and the supersymmetric invariant connection, we also find in the first case 
that the non-Abelian Berry's phase of one member of the supersymmetric partners is 
trivially equal to the identity operator. However, in the second case, we discuss some 
gauge properties of the non-Abelian Berry's connections and find that they are related 
by gauge transformation. 

K M Cheng and P C W Fung 

Some relevant discussions and conclusions will be presented in section 5.  

2. Time-depeudent supersymmetric quautum mechanics with degeneracy 

Let us consider a Hamiltonian f i , ( R )  which is parametrized by time-dependent para- 
meters R continuously. At any instant, we assume it to have a set of N degenerate 
levels with positive energy (say E(R)>O)  and the space of these degenerate levels 
(say @ , ( R ) )  is spanned by a set of instantaneous normalized bases: {lq,(R)),  i =  
1,. . . , N ) .  Furthermore we demand that the Hamiltonian can be factorized as: 

f i , ( ~ )  = A+(R)A-(R) (2.1) 

where k(R) is some linear operator and A+(R)  is its adjoint. 

parametrized by a time-dependent parameter R: 
The factorization (2.1) allows us to construct another Hamiltonian which is also 

f i 2 ( ~ )  = A-(R)A+(R). (2.2) 

The Hamiltonians f i , ( R )  and f i 2 ( R )  are said to be supersymmetric partners to 
each other and should have identical spectra except the zero energy ground state 
[ll-131. For a set of instantaneous normalized bases (lqa(R)),  i = l ,  . . . , N}, we can 
construct a set of instantaneous normalized kets {lc,(R)),  i = 1,. . . , N} which are 
defined by: 

A - ( R ) I v , ( R ) ) = m  15LR)) (2.3a) 

or conversely, 

A ' ( R ) I ~ , ( R ) ) = ~ I ~ I , ( R ) ) .  (2.3b) 

Obviously, If;(R)) are orthogonal t o  ea5h other because of the orthogonality of Iq,(R)) 
and can be shown to be eigenkets of H 2 ( R )  with energy eigenvalue E ( R ) .  Therefore 
[l&(!Z)), i = 1,. . . , N) span a N dimensional space of degenerate levels (say N R ) )  
of H,(R).  Moreover, any instantaneous eigenket of H,(R) with energy eigenvalue 
E ( R )  must be a linear combination of Jl , (R))  and hence is included in &(R) f9r the 
following argument. Assume that (+2(R) )  to be an instantaneous eigenket of H d R )  
with energy eigenvalue E ( R )  but is not included in @,(R). Analogous to (2.36) we 
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can construct an instantaneous eigenket, say l+l(R)),  of I?,(R) with energy eigenvalue 
E ( R ) .  However, it is easily shown that ] + , ( I t ) )  does not belong to ,@,(I t )  which 
contradicts the fact that the space of degenerate levels of I?,(R) with energy E ( R )  at 
any instant is a N dimensional space spanned by  { lq i (R)) ,  i = 1,. . . , N } .  

Consequently, because of the presence of supersymmetry between H,(R!  and 
e 2 ( R ) ,  the existence of N dimensional spaces of degenerate levels ( .Q,(R)) of $,(RI 
implies the existence of N dimensional spaces of degenerate levels (@, ( I? ) )  of H,(R)  
and their corresponding sets of instantaneous normalized bases, {(v<(R)), i = 1,. . . , N )  
and {Ili(R)), i =  1,. . . , N}, are transformed into each other as stated in (2.3a, b). 

We would like to remark that we have described time-dependent supersymmetric 
quantum mechanics in both non-degenerate [8] and degenerate cases. In both cases, 
we have assumed that-the instantaneous energy eigenvalue E ( R )  is always positive 
and the Hamiltonian H , ( R )  can be factorized as in (2.1) fhroughout the evolution. As 
long as these two assumptions hold, the construction of H,(R) (2.2) becomes possible 
and the corresponding energy eigenkets are related by (2.3a, b )  which make our 
discussions on the properties of Berry’s phases in the following sections feasible. 

3. Non-Abelian Berry’s phases in supersymmetric quantum mechanics 

We consider a quantum system governed by f i , ( R )  which evolves adiabatically. We 
denote the wavefunction of the system by I$,(R)) at any instant and assume the initial 
condition: 

I$j(Ro))= Iqj(%)) (3.1) 

where Ro is the value of the parameter at time f = 0. Under the adiabatic assumption, 
l$j(R)) may be expanded in terms of Ivi(R)): 

I$j(R))=Z Iqr(R))%v(f) (3.2) 

where R is the value of the parameter at time f. Without loss of generality, we 
renormalize the instantaneous energy such that E ( R )  = 0. Substituting (3.2) into the 
Schrodinger equation: i(J/Jr)l$j(R)) = H , ( R ) ~ I / J ~ ( R ) ) ,  we find: 

%j(f) = -E (qt(R)I&(R))%j(f) (3.3) 
k 

where the derivative is with respect to time f. By introduction of the gauge potential 
(qi(R)lVRqj(R)) and the corresponding connection one form d ( R )  defined as: 

d j ( R )  =(tli(R)/vRVj(R)).dR (3.4) 

% ( O ) = I  (3.5) 

with initial condition induced by (3.1) i.e. 

the solution of (3.3) is given by: 

%(I )  = PJ’ exp[ - d ( R ) ]  

in which 9 stands for path-ordered product and hence % ( t )  is path dependent and 
is not a well-defined function of parameter R. 
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Similar arguments can be applied to the quantum system governed by &R). Under 
the adiabatic approximation and the initial condition: 

I4j(Ro))=Ilj(Ro)) (3.7) 
in which llj(Ro)) is supersymmetrically related to I qj(Ro)) in view of (2.3). the wavefunc- 
tion of the system at any instant can be expressed as: 

l4j(R))=Z Ili(R))U,(f) (3.8) 

where we have chosen the states I&(R)) which are defined in (2.3) as the instantaneous 
bases for the space of degenerate levels. 

i 

The unitary matrix U should satisfy the differential equation analogous to (3.3): 

o v ( f ) = - Z  (&(R)lik(R))Ukj(f) (3.9) 
k 

and its solution is then: 

(3.10) 

where A is the connection one form analogous to d ( R )  defined as: 

A , ( R )  =( l i (R)P~l j (R)) .dR.  (3.11) 

The expressions (3.6) and (3.10) of %(f )  and U( f )  are known as non-Abelian Berry’s 
phases [2] and they are indeed not independent because of the existence of supersym- 
metry between the systems. To see this point, let us first consider the operation of V R  
on both sides of (2.3), we amve at: 

( 3 . 1 2 ~ )  

(3.12b) 

(3.136) 

In (3.12) and (3.13), the instantaneous energy E ( R )  is not zero although we have 
renormalized it to be zero to obtain (3.6) and (3.10). In fact, the renormalization is 
used to eliminate the dynamical ‘phase’ and simplify the calculations. However we 
must emphasize that the topological ‘phase’ is given in the form of (3.6) and (3.10) 
no matter whether E ( R )  = O  is valid. 

We define the difference of ‘the gauge potentials A,(R)= 
( v j ( R ) I V R v j ( R ) ) - ( ~ l ( R ) I V R ~ j ( R ) )  and obtain its expression using (3.13): 
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Moreover, with the help of (3.13), we also find that there is an equality of topological 
quantities including the gauge potentials: 

(tldR)IVRtlj(R))+ (tl~(R)IA+(R)(V,A-(R))lllj(R))/(ZE(R)) 

= ( S , ( R ) I V , ~ ( R ) ) + ( S , ( R ) I A ^ ~ ( R ) ( V , A ^ + ( R ) ) I ~ ( R ) ) / ( ~ E ( R ) ) .  (3.15) 
The equality (3.15) shows us that the topological quantities on both sides do  not 

share the same form. However, because the role of the Hamiltonians can be exchanged, 
the Hamiltonians may be factorized in another way: 

(3.16~) 

(3.16b) 
where L?*(P) are some linear operators different from k ( R )  in general. Moreover 
operators B"(R) induce transformations analogous to (2.3~1, b): 

B + ( R ) I ~ ~ ~ ( R ) ) = ~ I ~ , ( R ) )  (3.17~) 
h-(R)I tJR)) =m IdR)). (3.17b) 

].$(It)) are eigenkets of &R) with energy E ( R )  and hence must be related with I&(R)) 
by an unitary transformation: 

If,(R)) = fIli(R)) (3.18) 

where f is an unitary operator and must commute with f i2(R).  
In fact (3.18) istrue for any energy eigenket of H,(R) ,  therefore the most general 

relations between Br(R) and A*(R) are then: 

k ( R )  = A^+(R)f+ (3.19~) 
g + ( R )  = f k ( R ) .  (3.196) 

Because of (3.16a, b), we can also obtain an equality analogous to (3.15) but in terms 
of &R): 

(V~(R)IV,V~(R) )  + ( ~ ~ , ( R ) I ~ - ( R ) ( ~ , ~ + ( R ) ) I ~ ~ ~ ( R ) ) / ( ~ ~ ( R ) )  
= (ti(R)IV,tj(R))+ ( ~ ( R ) I B + ( R ) ( v , ~ - ( R ) ) I ~ ( R ) ) / ( ~ E ( R ) ) .  (3.20) 

(3.21b) 
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Clearly, both sides in (3.22) share the same form and we conclude that the toplogical 
quantity, p , ( R ) :  
~ I ~ ( ~ ) = ( T ~ ( R ) ~ ~ ~ T ~ ( R ) ) + ( T I ( R ) ~ ~ ~ ( ~ ) ( V R ~ ~ ( R ) ) ~ T ~ ( R ) ) / ( ~ ~ ( R ) )  (3.23) 
is invariant in the two supersymmetrically related systems whose Hamiltonians are 
written in the forms: H , ( R ) = A : ( R ) A ; ( R ) ,  where I = 1  or 2. 

As done in [ 8 ] ,  we would like to construct an expression of connection one form 

a connection one form is required to have values in the Lie algebra of the structure 
group of the principal fibre bundle. In our discussions, the structure group is U( N )  
and the invariant quantity we obtain in (3.22) may not satisfy the requirement. 
Fortunately, it can easily be shown that an invariant quantity that satisfy the requirement 
is simply, Al(R):  

K M Cheng and P C W Fung 
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h ~ ~ ( l Z )  pi,(R) - ( V ~ d m / 2 d m ) 8 ~ .  (3.24) 

Moreover, with a different choice of instantaneous normalized bases 
I T : ( R ) )  Z l ~ j ( R ) ) w j ; ( R )  (3.25a) 

i 

where o(R) is an N x  N unitary matrix, we can show that the invariant quantity: 
A,(R).dR transforms as a usual gauge potential: 

A,(R).dR+w+(R)[h,(R).dR]o(R)+w+(R) d w ( R )  (3.26) 
and the difference A(R).dR obtained in (3.14) transforms with a covariant manner 
with (3.26) but without the inhomogeneous term, i.e. 

(3.27) 
Finally we conclude, in accordance with (3.22) and (3.27), that there is a connection 

one form h,(R).dR which is invariant in the two supersymmetrically related systems 
analogous to that obtained in the Abelian case [8]. 

A(R) .dR -+ o'(R)[A(R) .dR]o(R). 

4. Example 

In this section, we discuss a quantum system described by the Hamiltonian in the form 
of spin quadrupole: 

fi- = ( S .  Bj' ( l i j  

in which the magnetic field vanes adiabatically and is parametrized by polar angles 

(4.2) 
The effect of Berry's phase in such system was investigated experimentally [9] and 

the features of the non-Abeiian Berry's phase in this system have been discussed 
theoretically in details recently [lo]. Let us start our discussion by expressing it in 
terms of polar angles 6 and 9: 

fi(6, 'p) = (S*B)' 

1 -  

(6, 'p): 

B = IBl(sin 6 cos (p, sin 4 sin 'p, cos 4). 

= (ix sin 6 cos 'p +iy sin 6 sin 'p + iz cos 4)'1~1~. (4.3) 
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The parameter space in this example is simply 2-sphere and it should be noted that 
the polar angles ( 4 , p )  is not everywhere defined on 2-sphere. 

Alternately (4.2) may be rewritten to be: 

Aw, p) =exp(-ippS,) exp(-i&)S: exp(i&) exp(ip$) 

Ida, P)) = exp(-i&) exp(-i4iy)Ii) 

(4.4) 

in which we set IBI = 1 for simplicity. The instantaneous eigenstate of A(4, p) is then 
~ .._.._, hv 17 L _ , _ ” , .  101. 

(4.5) 

where li) can be taken to be the eigenstates of 3,. Because the eigenstates with 
eigenvalues + m  form a doubly degenerate sector, the dimension of the degenerate 
levels is 2. Moreover it is shown that non-Abelian structure arises only for Iml=t [IO] 
and we will restrict our following discussions for this case. Using (4.5) we obtain the 
non-Abelian connection one form defined in (3.4): 

(4.6) 

where a =S+f and uk are the standard Pauli matrices. Moreover the corresponding 
gauge field 4E = d d  + d A SP is given by: 

F(4, p) = (-i)(a2-1) 2 d n  (4.7) 2 

with d n  =sin 4 d 4  A drp. 

the Hamiltonian: 
Identifying H ( 4 , p )  with A, mentioned in the previous section, we can factorize 

Ad4, rp)=A+(4, v)A-(e  v )  (4.8) 

A+(4, (p) = exp(-ip&) exp(-i&)& exp(it9’Jy) exp(iprSz) (4.9~2) 

A-(+: (p) = exp(-i(pp’Sz) exp(-i4t8y)$z exp!ifi$) exp( ipQ (4.96) 

where (8’, p‘) is another pair of polar angles and the supersymmetric partner A2(4, p) 
is given by: 

with 

A2(4, P)=A-(4,P)A+(s,  v )  
= exp(-ip’$) exp(-id9’$)$ exp(id9’$) exp(i(p’&). (4.10) 

Note that (4.10) is the spin quadrupole Hamiltonian with magnetic field which orien- 
tates along the direction (sin 4 ’  cos p’, sin $’sin p’, cos 19’). Therefore any pair of 
Hamiltonians having the form (4.1) are supersymmetrically related no matter what 
orientations of the magnetic fields are. However, in the following discussions, we will 
consider two particular cases in which (a’, rp’) are functions of (4, (p) and thus our 
arguments in the previous section become feasible. 

4.1. (4: pp3 = (0, 0) 

Firstly, we consider the simplest case in which W =  q ‘ = O  such that &(a, (p) in (4.10) 
is then: 

A2(4,p) = 3:. (4.1.1) 
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It is noticed that k2 is actually independent of the polar angles (8, rp) and the magnetic 
field is pointing towardsthe z direction forever. The instantaneous eigenstates of f i 2  
are also eigenstates of S, with eigenvalues *; and denoted by I*;). The connection 
one form defined in (3.1 1) and its corresponding gauge field F = dA+A A A are given 
by: 

A=F=O. (4.1.2) 

Because A(& rpj is identicai to zero in this exampie, the Berry's phase given by (3.10) 
is no longer non-Abelian but is equal to the identity operator I. 

K M Cheng ond P C W Fung 

We can also evaluate the quantities mentioned in (3.14), (3.23) and (3.24): 

A(@, rp).d(& rp) =&(a, Q) (4.1.3) 

/48, rp).d(8,rp)=Ai(s,rp).d(8,rp)=~(8,rp)/2 (4.1.4) 

with I = 1 or 2. The equality between p,( 8,rp) and A,( 8, Q) in (4.1.4) arises due to the 
fact that the instantaneous energy E ( @ ,  rp) is independent on the polar angles (8, rp). 

It is worth mentioning that the connection one forms & and A cannot he related 
by gauge transformation in this particular case. To see this point, we consider the 
gauge fields 9 and F which are gauge covariant. However, 9 is not zero while F is 
zero as stated in (4.1.2). 

4.2. (8, rp) = (-8, -Q) 

Secondly, we consider the case in which (8, rp) = (-8, -rp) such that &( 8,rp) in (4.10) 
is then: 

(4.2.1) 

The magnetic field involved in the system described by k2( 8, rp)  orientates in a direction 
opposite to that of A,(@, rp) and its instantaneous eigenstate can be obtained by using 
(2.3): 

q) = exp(i&) exp(i8iY$f exp(-iei;) exp(-i&). 

where we have used (4.5) and (4.96). It should he recalledihat we restrict our discussion 
for Iml=; and therefore li) represent the eigenstates of S,: I*;). 

The difference of the connection one forms can be calculated according to (3.14): 

A(8,cp)~d(4,rp)=(-i)(cos8a,d'p+au2dd9). (4.2.3) 

Note that we have aiready obtained the states jli(8, rpj) in (4.i.ij. By direct sub$tUtiOn 
into (3.11) we can derive readily the connection one form corresponding to H2(& p) 
defined in (3.11): 

.. 

(4.2.4) 

.. . ,. .I 

We wodd aiso remark that as A(& rp j .dit = d(8, rp j -A(& 'p j, we can derive (4.~4) 
with (4.6) and (4.2.3). 

Furthermore we note that, the gauge field F( 8, rp) is given by: 

F(8, rp)=i(a2- l )a ,dn.  (4.2.5) 
2 
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Comparing with (4.6) and (4.7), we find that the Berry's connection one forms and 
the gauge fields are related respectively by: 

(4.2.6) 

(4.2.7) 

and vice versa since U; = 1. Because U, is  a Hermitian 2 x 2 unitary matrix belonging 
to  U(2) and do,  = 0, A(9, p) and d(9, p) are actually related by gauge transformation. 

In addition, the invariant topological quantities defined in (3.23) and (3.24) are 
given by: 

~ ~ 1 ( 6 , p ) . d ( 6 , t t , ) = A ~ ( 9 , p ) . d ( 6 , p ) = i a s i n  6o, d p  (4.2.8) 

with i = 1 or 2. Again ~ ~ ( 8 ,  p) =A,(& p)  because the instantaneous energy E(ff, p j  is 
independent on (9, p) as stated in section 4.1. 

Furthermore, as discussed in [lo], the connection one forms in (4.6) and (4.2.4) 
are well defined only on the equatorial patch and then denoted by dE( f f ,  p)  and 

obtain a connection one form which is well defined on the south hemisphere of the 
2-sphere: 

~ S ( ~ , P ) = P + ~ . F ( ~ ,  p ) p + p + d p  

A E ( 6 ,  p) respectively. By gauge transformation with unitary matrix p = e-i(03'2)' , we 

(4.2.9) 

Meanwhile, by gauge transformation of A,(*, p)  with the same unitary matrix p. we 
yield a connection one form which is well defined on the north hemisphere and hence 
denoted by A N ( %  p): 

A N ( &  p) = p+Ad&,  'P )P  +p+dp 

= i( [(-I +cos 8) 5+a  sin 9 
2 

The non-Abelian Berry's phase % (or U) will be different if we use different connections 
d~(6, p) and dA.4, c p )  (or A,(& (P) and AN(*, v)): 

=p(zjuNp'(i) (4.2.1 lb) 
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where 1 and 2 are the endings of a line segment on the 2-sphere. Moreover the 
non-Abelian Berry's phases and U are related by: 

K M Cheng and P C W Fung 

(4.2.12a) 

(42.126) 
In view of (4.2.6), we have found that the two supersymmetrically related systems are 
corresponding to different choices of gauge in the transformation specified by (3.25a, b) .  
Finally it is worth noting that the invariant connection one form &(a, t,o).d(a,t,o) 
given by (4.2.8) is not related to dE(8, c p )  (or A€(& c p ) )  by gauge transformation. 

5. Discussions 

We have generalized our analysis on properties of Abelian Berry's phases in two 
supersymmetric related quantum systems [8] to that pertaining to systems whose Berry's 
phases are non-Abelian. In the Abelian case, we can derive an explicit expression for 
the difference in the Abelian Berry's connections of two supersymmetrically related 
quantum systems. Following, we can also obtain the difference between the correspond- 
ing Abelian Berry's phases. However, in the non-Abelian Berry's case, we have shown 
in section 3 that an explicit expression for the difference in the non-Abeiian Berry's 
connections can be derived (stated in (3.14)) but we are not able to derive the difference 
between the non-Abelian Berry's phases. The reason is that: in the Abelian case, the 
gauge group is U(1) and the difference in the Berry's connections, say 8, determines 
the difference between the Berry's phases (i.e. -i 8). On the other hand, in the 
non-Abelian case, the gauge group is the non-Abelian group U(N) with N > l .  The 
diiierence in ihe non-Koeiian Berry's conneciions does noi simpiy deiermine ihe 
difference between the non-Abelian Berry's phases because the phases themselves are 
not expressible in simple phase factor forms but are in forms of non-commutative 
unitary matrices. 

Moreover, in either Abelian or non-Abelian case, a topological quantity which is 
invariant in the two supersymmetrically related quantum systems can be constructed. 
In both cases, the iopokigicai qiiaiitkk are identica: io coiinedioiis oiii foiiis; 
moreover the holonomies corresponding to the connections [14] are obvious invariant 
topological 'phases' (both Abelian and non-Abelian) in the two supersymmetrically 
related quantum systems. 

In section 5 ,  we have discussed a quantum system described by the spin quadrupole 
Hamiltonian. We found that, in view of (4.8) and (4.10), there are infinite pairs of 

metric quantum mechanics. Among different pairs of supersymmetric partners, we 
chose two particular cases to illustrate our results. In the first one, H2 (4.1.1) is chosen 
to be time independent and hence gives trivial gauge potential and field as stated in 
(4.1.2). The difference in the Berry's connections A.dR and the supersymmetric 
iyariant connection A .dR are hence solely dependent on the Berry's connection of 
"1 '.a l l l " W l l  .I, ,-.".'.-,,.A 

In the second case, Hz (4.2.1) is chosen to be a form very similar to A,. The 
orientations of the magnetic fields involved in the two supersymmetrically related 
systems are just opposite to each other in directions. We have derived the difference 
in the Berry's connections A (4.2.3) and supersymmetric invariant connection A (4.2.8). 
The Berry's connections JB and A can be calculated by using instantaneous eigenstates 

~~~ 
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given in (4.5) and (4.2.2) respectively. It is found that these connections are well 
defined only on the equatorial patch on the 2-sphere. Using gauge transformation with 
unitary matrix p = e-i'c3'2)9, they can be transformed to be connections ds (4.2.9) and 
AN (4.2.10) which are well defined on the south and north hemispheres respectively. 
In fact it is not possible to define a global connection which behaves well everywhere 
on the 2-sphere [15,16]. Furthermore, we have found out the relations between the 

mentioning that the supersymmetric invariant connection A is not related to d (or A) 
by gauge transformation. This point can be seen by considering a gauge covariant 
quantity QF,, =&F,,+[A,, F J ,  the source current of the gauge field [IO]. Com- 
puted with A, this quantity is zero but it is not zero when derived using .d (or A). 

non-Ahe!ian Berry's phases % and U as stated i. (4.2.!!, !2). !E addlti(?n, it is worth 

References 

[ I ]  Berry M V 1984 h e .  R Sor A 392 45 
[2] Wilnek F and Zee A 1984 Phys. Re". Lett. 52 2111 
[3] Aharonov Y and Anandan I 1987 Phys. Rev. Len. SS 1593 
[4] Shapere A and Wilczek F (ed) 1989 Geometrical Phases in Physim (Singapore: World Scientific) 
[ 5 j  Simon B iPB3 Fhys. Kev. Lett. 5i i i67  
[6] Bahm 4 Boya L 1 and Kendrick B 1991 Phys. Reo. A 43 1206 
[7] Kiritsis E 1987 Commun. Math. Phys. 111 417 
[SI Chcng K M and Fung P C W 1992 1. Phys. A: Math. Gen. 25 1745 
[9] Tycka R 1987 Phys. Rev. Lett. SS 2281 

[IO] Zee A 1988 Phys. Rev. A 38 1 
[ I l l  Witten E 1981 Nucl. Phys. B 118 513 
[I21 Witten E 1982 Nuel. Phys. B 202 253 
[I31 Sukumar C V 1985 J. Phys. A: Math. Gen. 81 2917 
[I41 Kabayashi S and Nomizu K 1963 Foundations of Diflerentiol Geometry vol I (New York Interscience) 
[I51 Wu T T and Yang C N 1975 Phys. Rev. D 12 3845 
[I61 Wu T T and Yang C N 1976 N u d  Phys. B 107 365 


